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Abstract
Multi-tier architectures provide a means for building scalable distributed services. Caching is a classical
technique for enhancing the performance of systems (e.g. database servers, or web servers). Although
caching solutions have been successfully studied for individual tiers of multi-tier systems, if collectively
applied, these solutions may violate the coherence of cached data. This paper precisely addresses this
issue. It presents e-Caching, an end-to-end caching system for multi-tier services aimed at guaranteeing
data consistency across caches. The paper describes a novel caching protocol to automatically detect
data dependencies and apply inter-cache invalidations. The implemented protocol is evaluated with
the TPC-W online multi-tier bookstore service. The evaluation shows that e-Caching improves service
performance compared to regular caching techniques while guaranteeing global data consistency in
multi-tier systems.

1. Introduction

Today, many applications are implemented using multi-tier architectures. Internet services, which range
from Web servers to streaming media services, are based on this kind of architectures. Classical three-tier
Web applications start with requests from Web clients that flow through an HTTP front-end server and
provider of static content, then to an enterprise server to execute the business logic of the application
and generate web pages on-the-fly, and finally to a database that stores non-ephemeral data. To face
high loads in multi-tier systems, a commonly used approach is caching [10]. Roughly speaking, caching
consists in making a copy of request results for faster future reuse of these results.
Current caching solutions may successfully apply at individual tiers of multi-tier systems to cache
database query results [7, 8, 12, 2], application business objects [6, 9, 11], or dynamic Web documents [1,
3, 5]. Intuitively, caching back-end tier results (i.e. database query results) provides higher cache hit ratio
than caching front-end tier query results, since the same back-end query may be issued and shared by
different front-end queries. Whereas, caching front-end tier results offers a greater benefit in terms of
service response times in case of a cache hit, since front-end caching saves time on the front-end and
on the back-end. Therefore, caching solutions at these different levels are complementary and would
improve the overall performance of multi-tier systems. However, if put all together, existing individual
caching solutions of multi-tier systems might result in globally inconsistent cached data across tiers, in
case of dynamic and inter-dependent data.
The objective of this paper is to precisely bridge the gap between performance and consistency of
caching in multi-tier systems as follows :
– Automatic data analysis to detect inter-dependent data across caches of all tiers.
– Data consistency across multi-tier cache systems by using the generated data dependencies.
– Transparent caching for an easier and automated integration of caching to multi-tier systems.
In this paper, we present e-Caching, an end-to-end caching system that provides consistency across
cache levels. It guarantees consistency of cached data through an automatic multi-tier flow analysis. We
describe a novel caching protocol that guarantees consistency of cached data through multi-tier flow



analysis and global cache consistency management. Furthermore, thanks to the automated query and
flow analysis combined with a proxy-based approach, e-Caching can be easily applied to existent multi-
tier systems. Other issues such as cache replication, location and replacement strategies fall out of the
scope of this paper.
The rest of the paper is organized as follows. Section 2 describes the underlying system model, and
Sections 3 and 4 present e-Caching design principles and protocol. The results of the evaluation of e-
Caching in a real setting are described in Section 5. The related work is discussed in Section 6. Finally,
Section 7 draws our conclusion.

2. System Model

Multi-tier system.

A multi-tier system is a distributed system that consists of multiple tiers T1, T2,..,Tn, as its name indicates.
Each tier runs on a different node. Tier T1 may receive requests from external clients and also act as a
client of tier T2, which itself may receive requests from external clients and act as a client of tier T3, and
so on. External clients of a tier are end-users, operators or administrators of the tier. Thus, all tiers of
a multi-tier system act as clients and servers but tier Tn which is server-only. Tn is responsible of the
storage of persistent data of the multi-tier application (e.g., in a database).

Nested requests.

A request sent to a server at tier Ti is denoted Qi. Symmetrically, a result produced at Ti in response
to Qi is denoted Ri, and returned to the client that issued the request. A request handled at Ti may
nest subsequent requests to Ti+1. We define Sub(Qi) as the set of Qi’s subsequent requests. We define
Qi’s preceding requests, Pre(Qi), as the inverse function of Sub, that is the set of requests that induced
Qi from tier Ti−1, if any. The result Ri of request Qi is built based on the results of Qi’s subsequent
requests. Figure 1 presents an example of nested requests in a two-tier system. Request Q1_1, handled
by the front-end Web tier, calls subsequent requests Q2_1 and Q2_2 on the back-end tier, performs some
local processing before generating Q1_1’s result R1_1. Requests Q2_1 and Q2_2, handled by the back-end
tier, perform some local processing before respectively generating results R2_1 and R2_2 returned to the
front-end tier. These two latter results are themselves part of the global result R1_1. Thus, Sub(Q1_1) =

// Call 1st SQL query Q2_1
…

// Call 2nd SQL query Q2_2
…

// Local processing
…

// Generation of Web result
…

// Call 1st SQL query Q2_1
…

// Call 2nd SQL query Q2_2
…

// Local processing
…

// Generation of Web result
…

// Local processing
SELECTa 
FROM T 
WHERE b = X

// Generation of DB result
...

// Local processing
SELECTa 
FROM T 
WHERE b = X

// Generation of DB result
...

// Local processing
SELECTc, d 
FROM T 
WHERE c > 5

// Generation of DB result
...

// Local processing
SELECTc, d 
FROM T 
WHERE c > 5

// Generation of DB result
...

Q2_1

Q2_2

R2_1

Q1_1

R1_1

…
R2_1
…
R2_2
…

…
R2_1
…
R2_2
…

Front-end Web tier Back-end DB tier

R2_2R2_1

R2_2

FIGURE 1 – Nested requests in a two-tier system

2



{Q2_1, Q2_2} and Pre(Q1_1) = ∅, Pre(Q2_1) = Pre(Q2_2) = {Q1_1} and Sub(Q2_1) = Sub(Q2_2) = ∅.
The back-end tier, that stores persistent data, may receive read-only queries or read-write queries. As
indicated by its name, a read-only query Qn/r does not update the persistent data whereas a read-
write query Qn/w does. We say that a read-write query impacts a read-only query if the former updates
persistent data that the latter reads.

3. e-Caching Design Principles

Caching is an effective means for reducing load on servers [10]. It lies in making a copy of the results
of a read-only request to directly serve future identical requests from that copy. This avoids redundant
processing to regenerate request results. Moreover, a request Qi that directly or indirectly induces sub-
sequent requests to persistent data usually results in high response times because of database access.
With e-Caching, if such a request is read-only, it becomes cacheable and benefits from better response
times. Volatile, i.e. non-persistent, data is unlikely to be reused. Thus, a request on tier Ti is a read-only
request Qi/r if it directly or indirectly (through subsequent request on Ti+1) induces access to persistent
data in read-only mode. A request on tier Ti is cacheable if it is a read-only request. Symmetrically, a
request on tier Ti is read-write, Qi/w, if it induces directly or indirectly at least an access to persistent
data in read-write mode.

3.1. Multi-tier caching
For higher performance, e-Caching enables caching at multiple levels of a multi-tier system. For in-
stance, caching may apply to results produced by HTTP queries to the front-end web server, to results
produced by requests to application components of the middle-tier application server, or to results pro-
duced by SQL queries to the back-end database server.
In the following, Ci denotes the cache that stores request results produced by tier Ti. Notice that this
does not necessarily imply that Ci is located on a server at Ti but it may rather be located on a proxy
server. For transparency purposes for the client, the cache Ci stands as a proxy in front of its associated
server at tier Ti. A cached request has a unique identifier Qi, such as a URL and its set of parameters
for a web request, or an SQL query for a database request. Each cache Ci provides the interface with
operations for the insertion of a new entry in the cache (i.e. a request and its result), for the lookup of
the cached result of a request, or for the invalidation of an entry in the cache (Fig. 2).

// Insert an entry in cache Ci

Ci.insert(Qi, Ri)

// Fetch a cached result from cache Ci

Ci.lookup(Qi)

// Invalidate an entry from cache Ci

Ci.invalidate(Qi)

FIGURE 2 – Cache API for tier Ti

Note that if caches of request results of different tiers co-exist independently in the same multi-tier
system, the coherence of cached data among the tiers is violated. This happens, for instance, when a
dynamic web page requested by a web client is cached on a front-end cache, and later the persistent
data embedded in that page are updated by an operator from the back-end tier. In that case, the back-
end cache contains the updated data while the front-end cache keeps using invalid data. The main
advantage of e-Caching is that it avoids this situation providing consistency across tiers. The following
section describes how e-Caching works.

3.2. Multi-tier consistency
Local consistency.

Local consistency applies to the back-end tier cache Cn. Local consistency ensures that whenever a read-
write request Qn/w is committed on Tn, all read-only queries whose results are cached in Cn and which
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are impacted by Qn/w are invalidated. Thus, cache Cn provides an additional function described in
Figure 3(a) which returns read-only queries cached in Cn that are impacted (i.e. must be invalidated)
by a given read-write request at tier Tn. For instance, the read-only SQL request SELECT T.c1 FROM
T WHERE T.c2 = X is impacted by the write SQL request UPDATE T SET T.c1 = new_val WHERE
T.c2 = X. A more detailed example of such a function is described in Section 4.4.

Global consistency.

Besides local consistency that applies to the back-end tier cache Cn, global consistency between the
different caches of a multi-tier system must be provided to guarantee the consistency of cached data
in C1..Cn. Indeed, a read-write request on tier Ti may impact the cached result of a read-only re-
quest in cache Cj if the former request updates persistent data that the latter request has read. Thus,
e-Caching ensures that whenever a read-write request Qi/w is executed on Ti, all request results cached
in caches C1..Cn and impacted by Qi/w are invalidated.
To provide global consistency, e-Caching is mainly based on two facts. On the one hand, local consis-
tency of cached persistent data ensures that whenever a read-write request is executed on the back-end
tier and impacts a cached read-only request of the back-end tier (i.e., the former updates data the lat-
ter reads), the latter request is invalidated from the cache. On the other hand, the precedence function,
Pre, allows tracing back the call path across tiers. Whenever a cached read-only request of the back-end
tier is invalidated, the precedence function provides the read-only requests on the preceding tier that
issued that invalidated request. Thus, if they are in the cache, these preceding requests are invalidated
in the cache of the preceding tier through automatic cache invalidation propagation (see Figure 3(b)).
This cache invalidation propagation is performed recursively from the back-end tier to the front-end
tier until the first request in the call path using the Pre function. The proposed global cache consistency
management protocol, e-Caching, is described in the following.

// Return entries in cache Cn that are
// impacted by write query Qn/w

Cn.Imp(Qn/w)
(a) API for cache local consistency

// Forward invalidations to queries
// in the set QSet
Ci.forward_invalidate(QSet)

(b) API for cache global consistency

FIGURE 3 – Cache consistency API

Finally, whilst strong consistency is ensured for single-query transactions in the database, multi-query
transaction isolation [9] must be tackled to fully provide strong consistency, but this is out of the scope
of the paper. Furthermore, end-to-end transactional properties are assumed to be guaranteed, although
this is also out of the scope of this paper [4].

4. e-Caching Protocol

4.1. Overview of caching protocol
In e-Caching, a proxy cache Ci intercepts requests to tier Ti to transparently integrate multi-caching to
any multi-tier service and guarantee global consistency across the tiers as follows.
Figure 4(a) and 4(b) illustrate the case of a read-only request execution in case of a cache hit and a cache
miss, respectively. For simplicity purposes, the figure illustrates the case of a two-tier system where a
front-end request has one subsequent request, but this can be easily generalized to any multi-tier system
with multiple subsequent requests. When a read-only request (Q1) arrives to a tier, it first looks up the
cache of that tier, fetches the result stored in the cache (C1), and simply returns the result (R1) to the
client (Figure 4(a)). In Figure 4(b), a read-only request (Q1) arrives to tier T1, it looks up the cache of that
tier (C1) and does not find the corresponding result. In this case, the request is forwarded to the server
of that tier (app. server) for its actual execution, which as part of the execution of Q1 invokes Q2 on tier
T2, and the result (R1) is inserted in the cache (C1) before it is returned to the client.
Figure 4(c) describes a read-write request arriving to a front-end or middle-tier cache. Here, the request
is forwarded to be handled by the underlying server which itself sends a subsequent read-write request
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tier T1

cache C1 app. server
tier T2

cache C2 DB serverclient

lookup(Q1)
cache hit

query Q1

result R1

(a) Read-only request with cache hit

tier T1

cache C1 app. server
tier T2

cache C2 DB serverclient

lookup(Q1)
cache miss

query Q1

result R1

query Q1
subsequent 

query Q2

subsequent 
result R2

local 
processing

insert(<Q1, R1>)
result R1

...

(b) Read-only request with cache miss

tier T1

cache C1 app. server
tier T2

cache C2 DB serverclient
query Q1

result R1

query Q1

subsequent 
query Q2

result R2local 
processing

result R1

query Q2

local 
processing

result R2

forward_invalidate(∪ Pre(Qj));
for all Qj ∈ C2.Imp(Q2)

forward_invalidate

invalidate(<Qj>); 
for all Qj ∈ C2.Imp(Q2)

ack_forward

(c) Read-write request

FIGURE 4 – e-Caching protocol execution scenari

to the following tier. When a read-write request reaches the back-end tier, end-to-end cache consistency
management applies as follows. First, all entries in the back-end tier cache that are impacted by the
current read-write request are invalidated from that cache (local consistency). This information is ob-
tained thanks to the Imp function (Section 3.2). Then, for each invalidated entry in the back-end cache,
the Pre function provides the set of preceding read-only requests that issued that invalidated read-only
request, and that become themselves inconsistent. Thus, the back-end cache forwards invalidation to its
preceding cache tier to guarantee global consistency. Cache invalidation forwarding applies recursively
from the back-end to the front-end. Besides cache invalidation propagation, the read-write request and
its subsequent read-write requests are executed by their respective servers at each tier.
We do not detail in this paper cache replacement strategies for e-Caching since they are considered
orthogonal to this work. In case of eviction, the evicted entry is considered as invalidated and triggers
the invalidation of the impacted entries in the preceding cache tier.
Finally, as described by the general behavior of e-Caching in Figure 4, if a request is cacheable (read-
only), it is handled as described in cases 4(a) and 4(b). If the request is read-write, it corresponds to
case 4(c). If the type of the request is not yet determined (i.e. request executed for the first time), that
means that the request result is not cached (or uncacheable). In this case, the request is forwarded to the
underlying server and its type will be dynamically determined as described in the following.

4.2. Request type analysis
A request type is either uncacheable, cacheable or read-write. A request is cacheable if it (directly or indi-
rectly) accesses persistent data on the back-end tier and if all these accesses are in read-only mode 1. A
request is read-write if it (directly or indirectly) updates persistent data on the back-end tier. Otherwise,
the request is uncacheable. The type of a request is automatically determined at runtime the first time the

1. e-Caching considers caching the result containing persistent data (volatile data is unlikely to be reused).
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request is executed. Once determined, a request type is stored in a data structure that acts as a request
type cache, and reused for faster future determination of request types. If not present in the request
type cache, a request type is undefined and is dynamically determined as part of the request execution
as follows. Algorithm 1 describes how request type analysis is integrated to the general behavior of a
server at tier Ti. The integration is done in three well defined points : request prolog, request epilog and
subsequent request epilog (lines 1, 8, 13).
Initially in the request prolog (Algorithm 2), the type of the request Qi is undefined and the request is
set as not accessing the back-end tier. Then, after the execution of Qi’s subsequent requests, the types of
these subsequent requests are determined (see Algorithm 3). Thus, the types of the subsequent requests
allow to determine if Qi accesses persistent data on the back-end tier. Furthermore, if one of the subse-
quent requests is read-write, the type of Qi is defined as read-write as well. Finally, if not yet defined,
the type of Qi is determined in the request epilog as described in Algorithm 7. In short, only requests
generating SELECT queries in the database are cacheable. The three algorithms use the interface Typesi
(see Fig. 5(a)), an additional interface exposed by the cache at tier Ti. Typesi provides operations that
allow to set or get the type of a request Qi, and to state that/check if a request Qi (directly or indirectly)
accesses persistent data on the back-end tier.

4.3. Request flow analysis
The e-Caching protocol builds upon a request flow analysis process for determining the Pre and Sub
functions introduced in Section 2. In practice, e-Caching makes use of these functions for read-only
requests. Request flow analysis is performed the first time a request is executed. For efficiency, its result
is stored in a data structure to be reused when encountering the same request again. The proxy cache
at tier Ti exposes an additional interface, the Flowi interface described in Figure 5(b). This interface
defines operations that allow to get or set preceding requests of a request Qi executed at tier Ti. Thus,
the Pre(Qi) function introduced in Section 2 is equivalent to Flowi.getPreQueries(Qi). Both can be
used indistinctively in the rest of the paper. Similarly for Sub(Qi) and Flowi.getSubQueries(Qi).

// Set/get the type of a query
Typesi.setType(Qi, type)
boolean Typesi.isReadwrite(Qi)
boolean Typesi.isCacheableReadOnly(Qi)
boolean Typesi.isUncacheable(Qi)
boolean Typesi.isUndefined(Qi)

// Specify that/check if Qi accesses or not
// the back-end
Typesi.setAccessesBackend(Qi, boolean)
boolean Typesi.accessesBackend(Qi)

(a) Interface Typesi

// Get/set/add/remove preceding queries of Qi

querySet Flowi.getPreQueries(Qi)
Flowi.setPreQueries(Qi, querySet)
Flowi.unsetPreQueries(Qi)
Flowi.addPreQueries(Qi, querySet)
Flowi.removePreQueries(Qi, querySet)

// Get/set/add/remove subsequent queries to Qi

querySet Flowi.getSubQueries(Qi)
Flowi.setSubQueries(Qi)
Flowi.unsetSubQueries(Qi)
Flowi.addSubQueries(Qi, querySet)
Flowi.removeSubQueries(Qi, querySet)

(b) Interface Flowi

FIGURE 5 – Interfaces at tier Ti

Request flow analysis is integrated into the general behavior of a server at three well identified points as
it happens with the query type determination : the request prolog, the request epilog and the subsequent
request epilog (see Algorithm 1). First, as the request prolog (see Algorithm 4), if the request Qi is
analyzed for the first time, its sets of preceding and subsequent requests are initialized as empty. Then,
after the execution of each subsequent request Qj that is cacheable, the relationship between Qi and Qj

is stored (see Algorithm 5). Finally, if Qi is read-write or uncacheable, the stored request flow is updated
accordingly (see Algorithm 6). Moreover, whenever an entry is invalidated in cache Ci, the associated
preceding and subsequent requests in the stored request flow are updated as described in Algorithm 8.

4.4. Request dependency analysis
The e-Caching protocol builds upon the Imp function. This function determines the read-only requests
cached in the back-end tier cache that are impacted (invalated) by a read-write request executed on
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the back-end tier. This is based on the dependency (or not) between an SQL write query and an SQL
read query. Roughly speaking, a dependency between a read request and a write request exists if the
write modifies one or more columns in the row(s) being read, and/or results in changing the set of rows
satisfying the selection clause of the read request [1].
Dependency analysis first checks if the database tables and columns used in the read request are also up-
dated in the write request. To reduce false positive indications that may be induced by this column-only
check, finer-grain checks are applied. Selection criteria in the read request WHERE-clause are matched
to values from the write request to see if the same rows are being updated. For instance, if a read request
and a write request are respectively as follows :
SELECT T.c1 FROM T WHERE T.c2 = X

UPDATE T SET T.c3 = new_val WHERE T.c2 = Y

and X 6= Y, then the requests are not interdependent.
Request dependency analysis can be made even more precise by executing extra requests to retrieve
missing data needed to test for request intersection. This option generates additional requests to the
back-end but also reduces unnecessary cache invalidations which improves cache hit ratio.
It is interesting to note that while the column intersection analysis is based on the static portion of the
SQL query string (i.e. the request pattern), the other components of request dependency analysis come
into play at run-time, once the actual values used in the selection criteria are known. For efficiency, e-
Caching caches in a dedicated data structure the request patterns and the results of column intersection
analysis between request patterns. These can be reused on receiving requests with the same pattern.

5. Evaluation

In this section, we evaluate the performance of e-Caching and show its consistency compared to other
caching solutions.

5.1. Implementation and Evaluation Setup
We have evaluated our caching protocol using the TPC-W benchmark [14]. TPC-W implements an on-
line bookstore and defines a web benchmark for evaluating e-commerce systems. TPC-W establishes
three different workloads : browsing (5% writes), shopping (20%), and ordering (50%). The benchmark
establishes a database with 10 tables. We implemented the proposed e-Caching protocol in the context of
TPC-W where a front-end cache stores dynamically generated web pages and the back-end cache stores
SQL query results. In the experiments, the cache completely fits in memory and we did not apply cache
replacement strategies (e.g. LRU) that it is an orthogonal issue.
Using e-Caching only required to include approximately 150 lines of code to the TPC-W application.
Since TPC-W is a two-tier Web application, entry points for Web requests or SQL requests are very
well defined because they use defacto standard APIs (e.g. HTTP Servlet API, JDBC/SQL API). Fol-
lowing a proxy-based approach and intercepting entry points of each tier allowed us to capture re-
quests/responses of these tiers, and thus include calls to e-Caching as request pre-processing and post-
processing (cf. Algorithm 1). However, the integration of e-Caching to a multi-tier application could be
automated using instrumentation techniques, aspect-oriented techniques, Java filtering techniques, or
using proxies applied on standard APIs (e.g., J2EE, Servlets, JDBC).
The experiments were run in a cluster of 3 homogeneous nodes running Ubuntu 8.04. Each site is
equipped with two processors Pentium 2.80GHz and 4 GB of RAM. One node ran Postgres 8.4, an-
other one Tomcat 6.0 and the other the TPC-W clients. The two caches are collocated with Tomcat. Sites
in the cluster are interconnected through a 1-GBit Ethernet switch.
We have run shopping and browsing workloads in the benchmark with 50 clients (EBs). All update
transactions in the browsing workload were removed in order to have a read-only workload. The
database population parameters were 256 emulated browsers (EBs) and 10,000 items which generated
a database of nearly 1.5 GB. The measurements have been taken in between the ramp-up (150 seconds)
and cool-down phases (120 seconds). The measurement phase lasts 300 seconds. The ramp-up phase ini-
tializes the system until it reaches a steady state. The cool-down phase maintains the load used during
the measurement phase to allow requests of the measurement phase to complete. Each experiment was
executed five times, the results show the average.
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5.2. e-Caching performance
The goal of this experiment is to show the benefit in terms of response time when using e-Caching. We
compare the results of e-Caching with the multi-tier system with no caching.
Figure 6 shows the response time for browsing (RO) and shopping (RW) mixes. Each workload has
been tested with three different e-Caching configurations varying the duration of customer sessions :
short sessions (RO-Low and RW-Low), default sessions (RO-Med and RW-Med) and long sessions (RO-
High and RW-High). The longer the session, the higher the probability of hits in the cache and vice
versa because each customer might request the same data during its session. The experiments with no
caching produced similar results independently of the session duration. As expected, if there is no cache,
the response time is very high. The results for the browsing mix show that when using e-Caching, the
response time decreases from almost 50 ms. to 13, 10 and 1.5 ms. respectively. That indicates that the
more the probability of cache hits, the better the response time is. The same behavior can be found for
the shopping mix. Using e-Caching, response time is reduced from almost 60 ms. to 20, 18.5 and 7.75 ms.
Note that during the shopping mix e-Caching is also maintaining data consistency across tiers when
there are writes on the database.
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(a) Browsing mix
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(b) Shopping mix

FIGURE 6 – No cache vs. e-Caching

Then, we compare e-Caching with two other caching solutions (Web caching and SQL caching) in order
to exhibit the benefits of combining caches at multiple tiers instead of having a cache at a single tier.
Web caching stores only front-end request results (web pages) and SQL caching stores only database
results. Both caching solutions provide local consistency. In SQL caching, consistency is ensured as in
e-Caching (see Section 3.2). Conversely, local consistency in Web caching is ensured with a pessimistic
ad-hoc analysis, i.e., when detecting a write requests, all the cache entries that potentially could be
impacted by that write request are invalidated.
Figures 7(a) and 7(b) show the response time obtained with e-Caching and the two other solutions.
They also have been tested for short, default and long customer sessions with the browsing (RO-Low,
RO-Med and RO-High) and shopping (RW-Low, RW-Med and RW-High) workloads.
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FIGURE 7 – e-Caching vs. single tier caching solutions
SQL caching provides better response time than Web caching with RO-Low and RO-Med. This happens
because in order to generate a result (web page), the front-tier submits several requests to the database
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and different requests share some database queries. So, if a database request is already cached by SQL
caching, the access to the database is avoided saving processing time. With RO-High due to the fact
that the probability of hits is higher, Web caching performs better than SQL caching because a high rate
of request does not need to go to the back-end. Finally, the lowest response time is obtained when e-
Caching is used. This is due to the fact that some of the requests that are not cached in the front-end are
cached in the back-end. Therefore, the combination of several caches improves the response time while
provides data consistency across caches.
Figures 8(a) and 8(c) show the cache hit ratio obtained in the previous experiments in Web caching
and in the front-end tier of e-Caching . As expected, the longer the customer session, the higher the hit
ratio in both configurations. We obtained 30%, 50% and 95% of hits for RO-Low, RO-Med and RO-High,
respectively, and 30%, 45% and 80% for RW-Low, RW-Med and RW-High. Note that for the shopping
mix, the Web caching hit ratio is smaller because of the pessimistic consistency protocol (we will analyze
this in detail in the next subsection).
The hit ratio in SQL caching and in the back-end tier of e-Caching is depicted in Figures 8(b) and 8(d).
Figure 8(b) shows that for the browsing mix and e-Caching the number of hits decreases at the back-
end when customers have longer sessions. This happens because there are more hits in the cache of the
front-end tier. That implies that, fewer requests are submitted to the back-end tier and therefore, there
are fewer hits at the back-end. This does not hold for the shopping mix (Fig.8(d)). Since write requests
are not cached at the front-tier, their subsequent requests are submitted to the back-end. The subsequent
requests of a write request in TPC-W include several read requests to the back-end, and some of these
requests are cached at the back-end. For instance, when a customer enters an order (a write request), its
personal data and the content of his/her shopping cart may be already in the back-end cache.
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(c) Front-end - shopping mix
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FIGURE 8 – Cache hits

5.3. Caching invalidations
Inconsistencies might appear in caches in the presence of writes in the database. We analyze in this ex-
periment how each caching solution avoids inconsistencies through invalidations. Web caching uses a
pessimistic consistency protocol though an ad-hoc analysis of application requests that manually iden-
tifies write request and invalidates the set of possible cache entries that might be impacted by a write
requests. On the other hand, both e-Cachingans SQL caching use the automatic consistency protocol for
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the back-end cache described in Section 4. For the front-end cache, e-Cachinghas a more precise inval-
idation process since the invalidations in the back-end cache determine what cache entries are invali-
dated in the front-end cache. We first executed the shopping mix (it contains write requests) with both
e-Caching and Web caching and counted the number of invalidated entries in their front-end cache. Fig-
ure 9(a) shows the results. Web caching invalidates on average almost 1000, 850 and 775 entries in the
cache due to the pessimistic approach. In contrast, e-Caching invalidates only up to 160 entries because
of the invalidations in the back-end tier. This measures the number of inconsistencies that e-Caching de-
tects and avoids and because the smaller number of invalidations, e-Caching can benefit of better hit
rates (cf. Figure 8(c)).
Finally, a similar number of invalidations happens at the back-end cache for both e-Caching and SQL
caching (9(b)) because in both cases back-end caches contain similar results.
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FIGURE 9 – Cache invalidations (shopping mix)

6. Related Work

Caching has been extensively studied in the context of Web and multi-tier Internet services [10, 15,
13]. Systems such as Wikimedia and Facebook propose multi-tier caching 2, 3. However, these multi-tier
caching systems are restricted to non-dynamic data or inter-dependencies among data in the caches are
not well defined. Furthermore, in such systems there is unfortunately no attempt to automatize cache
invalidations. In the following, we focus on caching dynamic content. Existing solutions mainly differ
with regard to the type of cached data, cache consistency levels and cache transparency.
Type of cached data. Existing caching solutions in multi-tier systems handle one of the following types of
cached data : dynamic Web content [1, 3, 5], application business objects [6, 9, 11], or database query
results [7, 8, 12, 2]. Intuitively, caching back-end tier results (i.e. database query results) provides higher
cache hit ratio than caching front-end tier query results, since the same back-end query may be issued
and shared by different front-end queries. On the other hand, caching front-end tier results offers a
greater benefit in terms of service response times in case of a cache hit, since front-end caching saves
time on the front-end and on the back-end. e-Caching allows to jointly cache different types of data in a
multi-tier Internet service and thus, combines benefits in terms of cache hit ratio and response times.
Cache consistency. Time-based weak consistency of data is proposed by some solutions caching query
results from the database tier [3, 7, 8]. Other approaches provide strong consistency when caching results
from the front-end tier [1], the middle-tier [6, 9], or the back-end tier [2]. However, this is limited to the
local tier of the cached data, and hence inconsistencies may appear on other tiers of the multi-tier system.
e-Caching proposes a multi-cache protocol providing global data consistency across the tiers.
Cache transparency. To be successfully applied, some caching approaches require considerable effort from
the application developer to provide input about the application structure, the flow of its queries and
their dependencies [5, 7, 8, 16]. In contrast, e-Caching automates the process of application analysis to
dynamically and transparently build information about application query flow and dependencies.

2. http ://wikitech.wikimedia.org/images/f/ff/Ryan_Lane_-_Wikimedia_Architecture.pdf
3. http ://www.scribd.com/doc/4069180/Caching-Performance-Lessons-from-Facebook
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7. Conclusions

We have presented e-Caching a consistent multi-tier caching system. e-Caching avoids the inconsisten-
cies that might appear when combining independent caching systems at different tiers. The evaluation
shows that althought e-Caching mantains data consistency, it provides a noticeable performance im-
provement by combining caching at multiple tiers compared to other single-tier caching solutions that
also provides data consistency. e-Caching provides a set of well-defined interfaces that ease the integra-
tion of caching in any multi-tier system. This integration can be easily automated, providing transparent
caching.
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Algorithm 1: Request handling on server at Ti
Input:
Qi : request received by server at Ti
Output:
Ri : result of request Qi

Request prolog : type determination,1

flow analysis

/* Initial empty result */2

Ri := " "3

foreach Qj induced by Qi do4

/* Subsequent request execution */5

send request Qj to Ti+16

wait until receive Rj from Ti+17

Request epilog : type determination,8

flow analysis

/* Result composition */9

Ri := Ri ⊕ Rj10

/* Local processing and Ri finalization */11

...12

Request epilog : type determination,13

flow analysis

return Ri14

Algorithm 2: Request type determination - Qi re-
quest prolog

if Typesi.isUndefined(Qi) then
Typesi.setAccessesBackend(Qi, false)

Algorithm 3: Request type determination - Sub-
request epilog
// After Qj execution, i.e. Qi’s subsequent request

if Typesi.isUndefined(Qi) then

if Typesi+1.accessesBackend(Qj) then
Typesi.setAccessesBackend(Qi, true)

if Typesi+1.isReadWrite(Qj) then
Typesi.setType(Qi, read−write)

Algorithm 4: Request flow analysis - Qi prolog

/* First time request is analyzed, initialize its flow */
if Typesi.isUndefined(Qi) then

Flowi.setPreQueries(Qi, ∅)
Flowi.setSubQueries(Qi, ∅)

Algorithm 5: Request flow analysis - Qi’s subre-
quest epilog

/* If subsequent request Qj is cacheable_read_only,
add Qi as its preceding request */
if Typesi.isUndefined(Qi)
and Typesi+1.isCacheableReadOnly(Qj) then

Flowi.addSubQueries(Qi, {Qj}))
Flowi+1.addPreQueries(Qj, {Qi})

Algorithm 6: Request flow analysis - Qi epilog

/* Request type is defined : if uncacheable or
read−write request, not used by e-Caching, remove
it from the stored flow */
if Typesi.isUncacheable(Qi)
or Typesi.isReadWrite(Qi) then

foreach Qj in Flowi.getSubQueries(Qi) do
Flowi+1.removePreQueries(Qj, {Qi})

Flowi.unsetPreQueries(Qi)
Flowi.unsetSubQueries(Qi)

Algorithm 7: Request type determination - Qi re-
quest epilog

if Typesi.isUndefined(Qi) then
if i = n then

/* Determine SQL query type */
if Qi is an SQL SELECT then

Typesi.setType(Qi, cacheable read-
− only)

else
Typesi.setType(Qi, read−write)

Typesi.setAccessesBackend(Qi, true)

else if not Typesi.accessesBackend(Qi) then
Typesi.setType(Qi, uncacheable)

else
Typesi.setType(Qi, cacheable read-
− only)

Algorithm 8: Request flow update in
Ci.invalidate(Qi)

foreach Qj in Flowi.getSubQueries(Qi) do
Flowi+1.removePreQueries(Qj, {Qi})

Flowi.unsetPreQueries(Qi)
Flowi.unsetSubQueries(Qi)
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