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Abstract. The various algorithms underlying P2P systems are notoriously difficult to design
and analyze. Coming up with new proven algorithms for such large scale systems is a challen-
ging task. We report on the initial steps of an ongoing work that aims to devise an efficient
correct-by-construction broadcast algorithm for the CAN structured overlay network. To rigo-
rously reason about such an algorithm and prove correctness we rely on an interactive theorem
prover : Isabelle/HOL. This paper presents a generic reasoning framework which should ease
the promotion of formal correctness proofs of existing multicast algorithms and also facilitate
the design of new ones.
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1. Introduction

Peer-to-Peer (P2P) systems have been recognized as a key communication model to build sca-
lable platforms for distributed applications such as file sharing, distributed storage, etc. P2P
systems are broadly classified into unstructured and structured overlays based on the topo-
logy [4]. In the context of this work, we are interested in Structured Overlays Networks (SONs)
that emerged to alleviate inherent problems of unstructured P2P architectures. In these sys-
tems, peers are organized in a well-defined topology (ring, torus, cube, etc.) (e.g., CAN [17],
Pastry [20], Chord [21]), where resources (e.g., data, file, etc.) are uniformly stored in a deter-
ministic location using consistent hashing. SONs typically offer a Distributed Hash Table (DHT)
abstraction for data storage and retrieval which supports efficient key-based lookups. The main
advantage of SONs is their deterministic behavior in terms of search complexity which is gua-
ranteed, with a high probability, to be logarithmic with respect to the number of nodes and
that the data is uniformly distributed among nodes thanks to the use of consistent hashing
functions. The nature of some large-scale applications, such as content delivery systems or pu-
blish/subscribe systems, built on top of SONs, demands application-level dissemination pri-
mitives which do not overwhelm the overlay, i.e. efficient, and which are also reliable. Building
such communication primitives in a reliable manner on top of such networks would increase
the confidence regarding their behavior prior to deploying them in real settings. In order to
come up with real efficient primitives, we take advantage of the underlying geometric topo-
logy of the overlay network and we also model the way peers communicate with one another.
In this paper, we are interested in the correct design of an efficient communication primitive on
top of the CAN overlay network. We thus present a reasoning framework that will allow us in
the future to define dissemination primitives and formally prove their properties.



Contributions

This paper contributes to the correctness of distributed execution environment. We choose to
focus on theorem proving techniques to be able to prove generic properties of distributed fra-
meworks and middleware and address large-scale systems. More precisely, our aim is to de-
sign an efficient (in terms of messages) and correct broadcast algorithm for the CAN overlay
network. In this paper, we present Isabelle/HOL definitions and theorems to reason on such
algorithms, to prove the correctness of existing group communication algorithms, but also to
be able, through the abstractions and proofs we propose, to facilitate the design and proofs of
new ones. The typical properties we are interested in are : efficiency, reliability, and coverage.
We expect our framework to be general enough to study CAN networks in general, by provi-
ding the formalization for the basic blocks composing this specific structured overlay network.
We are not interested in formalizing the whole CAN protocol but rather focus on the minimal
set of abstractions needed to devise efficient correct-by-construction group communication al-
gorithms on top of such overlay. Therefore our contributions in this paper are the following :
– A formalization of an abstraction of the CAN overlay network with related theorems and

correctness proofs.
– A formalization of the interplay between the geometric notions of the CAN and the neighbo-

ring and communication aspects ; more precisely correctness proofs about messages, message
paths,. . . used by the algorithm on top of CAN.

– An example explaining how to define formally a broadcast algorithm for a static CAN.

Why Isabelle/HOL ?

In general, formal methods improve the reliability of proposed algorithm and the confidence
one has in their properties. In our case we want to see what conditions are necessary to ensure
the correctness and other properties of a broadcast algorithm over a CAN. Mechanical proofs
will ensure the correctness of the studied protocols, with a much higher confidence than paper
proofs which rely too often on “well known” properties or “obvious” steps that could reveal
wrong or underspecified. A theorem prover enforces the precise and sound formalization of
the studied protocols, and of the hypotheses ensuring their correction and properties.
Proving properties on distributed algorithms could be done by specific formalisms for distri-
buted systems, like TLA+ [11], however we chose a more general theorem prover to have better
support for general reasoning. Indeed, reasoning on the geometry of a CAN requires generic
theorems that will be better supported by a general purpose theorem prover like Isabelle or
Coq for example. Additionally, all formal methods relying on model-checking work by instan-
tiation on a finite set of states, meaning one can only verify protocols on a small number of
processes. Theorem proving on the contrary requires the help of the programmer to prove pro-
perties that are valid on an arbitrary number of processes. Consequently, the proof performed
in Isabelle/HOL are particularly adequate to study large-scale distributed systems. Among
theorem provers, the exact choice of Isabelle/HOL is not crucial here, our framework could
be easily written in Coq for example ; however Isabelle/HOL is an interactive theorem prover
quite user-friendly.

The rest of the article is organized as follows. Next section presents the CAN overlay network,
and motivates the importance of application-level dissemination algorithms with an emphasis
on CAN and we briefly present the motivation behind our approach for proving the correct-
ness of those algorithms. Section 3 presents our contribution, focusing on the design choices
we made and giving a first feedback on the use of theorem provers for proving distributed
algorithms. Section 4 reviews the most relevant related works.
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2. Background and motivation

The Content Addressable Network (CAN) [17] is a structured P2P network based on a d-
dimensional Cartesian coordinate space labeledD. This space is dynamically partitioned among
all peers in the system such that each node is responsible for storing data in a zone inD ; stored
data consist in (key, value) pairs. To store the (k, v) pair (the insert operation in Figure 1), the
key k is deterministically mapped onto a point i in D and then the value v is stored by the
node responsible for the zone comprising i. The lookup (the retrieve operation in Figure 1) for
the value corresponding to a key k is achieved by applying the same deterministic function
on k to map it onto i. The query processing is an iterative routing process which starts at the
query originator and which traverses its adjacent neighbors (a peer only knows those), then the
neighbors’ adjacent neighbors so on and so forth until it reaches the zone containing the value
as depicted by the retrieve operation in Figure 1.

FIGURE 1 – Routing in CAN - example of data storage (insert(key ,value)) and retrieval (re-
trieve(key)).

CAN is a practical infrastructure for file sharing, data storage and so on. It can be also very
effective when it comes to large scale information dissemination. As a matter of fact, network-
layer multicast is still not widely adopted by most commercial ISPs [6] and this prevents the
usage of practical native one-to-many communication primitives by today’s large scale appli-
cations. This technical impediment, mainly due to costs issues and bandwidth preservation
policies, was overcome with the introduction of application-level multicast protocols such as [5].
Scribe [3], Bayeux [24], and more specifically the CAN-based multicast [16] are examples of
such application level multicast solutions. Such systems, which are based on SONs, directly
leverage the underlying geometrical infrastructure and offer practical group communication
abstractions to higher level applications which need to efficiently disseminate information to
multiple nodes in the network.
The authors of CAN, in [16], give hints of a flooding mechanism which is efficient for a perfectly
partitioned coordinate space. However their method does not fully eliminate all duplicates if
the space is not perfectly partitioned as depicted in 2(a) (zone H receives twice the information).
Figure 2(b) shows on the contrary an optimal dissemination pattern, unfortunately we found
no algorithm implementing such an optimal dissemination pattern. The DKS system [8] intro-
duced generic algorithms for building ring-based SONs and also provides generic multicast
algorithms. A correlated contribution by the same authors is a generic and efficient broadcast
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algorithm on top of ring-based SONs which eliminates any redundant messages [7]. Finally,
authors of Meghdoot [9], a content-based publish/subscribe system based on CAN, provide a
way to avoid duplicates in their event propagation algorithm which seems worth checking out
formally.
The questions that we ask ourselves were the following : “can we devise a broadcast algorithm
which is efficient (i.e. without any redundant messages) for CAN, as depicted in Figure 2(b) ”
and “can we do it and prove its correctness while trying to construct it ?”.

Multicast Services over Structured P2P Networks 879

Fig. 1 An example of the efficient flooding algorithm in a CAN-multicast system. The node re-
sponsible for the shadowed zone is the multicast data source

Fig. 2 An example of the enhanced efficient flooding algorithm in a CAN-multicast system. Note
that now there are no double packets in any

multicast: Members of a multicast group self-organize in an instance of Chord or
DKS(N,k,f). Consequently, a multicast transmission to a certain group just requires
to broadcast the Chord or DKS(N,k,f) instance associated to that group. However,
this proposal differs from the CAN based multicast in the flooding mechanism. As
it is explained in Section 2.1, the efficient flooding algorithm (and also its enhanced
version) produces redundant messages. The Chord/DKS flooding algorithm that is
called “correcting broadcast” eliminates any redundant packets.

(a) Efficient flooding
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to broadcast the Chord or DKS(N,k,f) instance associated to that group. However,
this proposal differs from the CAN based multicast in the flooding mechanism. As
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(b) Enhanced efficient flooding

FIGURE 2 – Efficient flooding in CAN (taken from [13])

Using an interactive theorem prover such as Isabelle/HOL [14] and its high-order logic pro-
vides us the expressiveness needed for formalizing such a distributed algorithm and answe-
ring the above questions. A high order logic naturally supports the formalization of the data
structures and the properties a distributed algorithm possesses and provides the reasoning
modes to prove them. The expressiveness of Isabelle’s logic allows us to reason on an abstrac-
tion of the system we design, meaning that we can abstract away some properties and precise
details of the CAN overlay and focus on the aspects ensuring the correctness of the dissemi-
nation algorithm properties. The benefits of using such an environment is that it gives us the
confidence in the correctness of the proofs we construct. There is a strong need for enriching
the existing Isabelle libraries with specific reasoning building blocks for distributed systems.
CAN is a popular DHT which is used as a distributed substrate for large scale applications.
Thus, our motivation is to put forward proven abstractions for proving correctness properties
of distributed algorithms on top of CAN in order to contribute to the advancement of correct
distributed algorithms.

3. A Mechanized Model for CAN and Broadcast Algorithms

We describe in this section our formalization of CAN, messages exchanged between CAN
nodes, and definition of a generic broadcast algorithm for CAN. We provide the Isabelle/HOL
definition of most of the crucial notions, relying on more informal definition for the parts that
are not directly related to our purpose. We also provide a few characteristic lemmas. Our objec-
tive is to give a precise idea of our approach, but we refer the reader to the source code available
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on our Web page 1 for the exhaustive formalization.
We do not present here the Isabelle/HOL syntax in details, the reader can refer to Isabelle/HOL
tutorial for a precise description. Note however that most of the syntax is much similar to
mathematical notations ; the main differences are the following : −→ is the implication, :: defines
the type of an expression, and A⇒B is the type of functions from A to B. For manipulating
structures Isabelle/HOL provides the following notations : ! accesses an element of a list, # is
the list constructor it appends an element at the beginning of the list, and @ appends two lists.

3.1. CAN
A crucial question when formalizing a complex structure like a CAN is which level of abs-
traction should be used, and which notions of Isabelle/HOL should represent basic notions of
CAN networks. We represent a CAN by a set of nodes, a zone for each node, and a neighboring
relationship, stating whether one node is neighbor of another. More precisely, a CAN is a set
of integers identifying the different nodes. A function Z matches each node to a Zone, where a
zone is a Tuple set (a tuple is an array of integers). Note that we abstract away a few constraints
of the CAN model which are not useful for us, like zones are rectangular, and we do not relate
zones with the neighboring notion as it does not reveal useful for the moment. In Isabelle, a
CAN is defined as follows :

typedef CAN = {(nodes::nat set, Z :: nat ⇒ Zone, neighbours:: (nat × nat) set) .
finite nodes ∧
finite neighbours ∧
(∀ x y. (x,y)∈ neighbours −→(y,x) ∈ neighbours)∧
(∀ x. (x,x)/∈ neighbours) ∧
(∀ tup. ∃n∈nodes. tup ∈ (Z n)) ∧
(∀ N∈nodes. ∀ N ′∈nodes. N 6=N ′−→¬ intersects (Z N) (Z N ′))}

Additional constraints state that the set of nodes is finite, the zones cover the whole space, and
are disjunct. We define three auxiliary functions CAN_Nodes, CAN_Zones, and CAN_neighbours
returning each part of a CAN.
We also define a function intersects Z Z’ that checks whether zone Z intersects zone Z’ : it is
true if Z and Z’ have at least one point (tuple) in common. In the following, we say that “a
node intersects a zone Z”, if the zone of the node (((CAN_Zones C) node)) intersects Z. Then we
state that a zone is connected 2 if the nodes it intersects are all connected to one another (there
is a path of neighbors between any two nodes intersecting the zone). The Isabelle definition of
Connected is the following, it is a function that takes a CAN and a Zone and returns a bool :

definition Connected:: CAN⇒Zone ⇒bool
where Connected C Z ≡ (∀ n∈ CAN_Nodes C. ∀ n ′∈ CAN_Nodes C.
((intersects (CAN_Zones C n) Z∧intersects (CAN_Zones C n ′) Z) −→
(∃ node_list. (node_list!0 = n∧destination_NL node_list = n ′∧

distinct node_list ∧
(∀ i<(length node_list−1). ((node_list!i)∈CAN_Nodes C)∧CAN_neighbour C (node_list!i)

(node_list!(i+1)) ∧ intersects (CAN_Zones C (node_list!i)) Z)))))

It states that if n and n’ are two nodes which zones intersect Z, then there is a list of nodes (all
distinct) starting at n, ending at n’, only passing by nodes intersecting Z, and for which each
node of the list is neighbor of the previous one.

1. The code can be found here : http://www-sop.inria.fr/oasis/personnel/Ludovic.Henrio/
misc. We use the Isabelle2009-2 version.

2. This notion is closed to the geometrical notion of connectivity, or rather path connectivity.
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We also proved a few generic lemmas that will be useful for proving properties entailing CAN
structure. We detail below two such lemmas illustrating the properties of a CAN that will reveal
useful to reason about such a structure.
Let us first mention an induction principle that will allow us to prove a property related to a
zone by induction on the size of the zone, or more precisely by induction on the number of
nodes intersecting the zone. In Isabelle,

∧
stands for “for all” (at the meta-level), and a theorem

is expressed by a term of the form Jpremise 1 ; premise 2 K =⇒ Conclusion. The induction theorem
is thus written as follows :

theorem induct_node_zone: [[ P {};∧
n Z. [[

∧
Z ′. card {node ∈ CAN_Nodes C. intersects Z ′ (CAN_Zones C node)}=n =⇒ P Z ′;

card {node ∈ CAN_Nodes C. intersects Z (CAN_Zones C node)}=Suc n]] =⇒ P Z ]]
=⇒ P Z

It states that, if (1) we prove a property P is true for an empty zone, and (2) we prove that if P
is true for all zones of size n then it is true for all zones of size n + 1 ; then the property is true
for all zones.
Let us additionally mention another useful lemma. It allows us to initiate a path inside a
connected zone : if the zone intersects more than one zone, then one can find two nodes, neigh-
bor one of the other, inside the zone :

lemma Connected_exists_neighbour:
[[Connected C Z; card {N∈CAN_Nodes C. intersects (CAN_Zones C N) Z}>1]]
=⇒∃ N ∈ CAN_Nodes C. ∃ N ′∈ CAN_Nodes C.

intersects (CAN_Zones C N) Z ∧intersects (CAN_Zones C N ′) Z ∧CAN_neighbour C N N ′

3.2. Messages and Message Paths
When the structure of the network is defined, we can provide a definition for messages and for
the path followed by a message.
A message is made of four pieces of information : an identifier for the message (which could
identify uniquely its content for example), a source node, a destination node, and the zone to
which it must be transmitted. The Isabelle code defining such a quadruple is very simple :

types Message = nat × nat × nat × Zone

We decided to rely on the notion of zone to be covered to define a broadcast algorithm, because
it seems quite adapted to a CAN, and algorithms presented in Section 2 fit easily with such a
representation. Also as we are looking for an efficient algorithm, it seems quite reasonable to
try to split efficiently the zone to be covered in order to avoid sending a message to the same
node twice.
Message_zone, Message_dest, and Message_source are functions accessing the three first fields. We
also define an abbreviation <m|x,y,Z> for defining a Message, this allow us to easily identify
messages inside the definitions and lemmas.
A valid path relatively to a message set is a list of messages (msgs), each starting from the arrival
node of the previous node. To be able to reason on the longest path, for example inside a zone,
we forbid loops inside message paths.

definition valid_path:: Message set ⇒Message list ⇒ bool
where valid_path msgs ML ≡ ML 6=[] ∧(∀ i<length ML.ML!i∈msgs) ∧

(∀ i<length ML − 1.Message_dest (ML!i) = Message_source (ML!(Suc i))) ∧
distinct ML
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More precisely, the above definition states that, given a list of messages msgs, a message list ML
is a valid path if it is non-empty, and all messages of ML belong to msgs, and the destination
of the message number i is the source of the message number i + 1 ; finally all the elements of
the list must be distinct, which ensures that no two elements of the ML list are equal and thus
forbids loops of messages inside ML.
The predicate path_inside_zone takes a CAN, a set of messages msgs, and a zone Z, and returns
the set of valid message paths formed of messages of msgs that are entirely inside the zone Z.
For this we check that the origin node of the path intersects the zone, and that the destination
node of each message of the path intersects Z.

definition path_inside_zone:: CAN ⇒ Message set ⇒ Zone ⇒ Message list set
where
path_inside_zone C msgs Z ≡
{MsgL. valid_path msgs MsgL ∧ (intersects (CAN_Zones C (source MsgL)) Z) ∧

(∀ i<length (MsgL). (intersects (CAN_Zones C (Message_dest (MsgL!i))) Z))}

The following lemma can be applied automatically to simplify the valid_path predicate by de-
composing it on the head and the tail of the list : a path is valid if it appends a new message to a
valid path, and the message arrives at the origin node of the first message of MsgL (Message_dest
M = source MsgL)).

lemma valid_path_cons:
(valid_path msgs (M#MsgL)) = ((MsgL=[]∧M∈msgs)∨(valid_path msgs MsgL

∧ M/∈set MsgL ∧ (MsgL6=[]−→Message_dest M = source MsgL) ∧ M∈msgs))

path_inside_zone can be proved to be finite provided the set of messages is finite :

lemma finite_path_inside_zone: finite msgs =⇒finite (path_inside_zone C msgs Z)

3.3. Broadcast Specification
We can now define a broadcast mechanism for the CAN overlay network. It is far from trivial
to define an algorithm in a convincing way in Isabelle/HOL. Indeed, the basic language of Isa-
belle is a pure functional language similar to λ-calculus, which is not the language in which
we would usually encounter broadcasting algorithms. Here we want to focus on the way a
message triggers other ones, for this we concentrate our specification on the notion of conse-
quences, and on a specification of the set of messages used to broadcast an original message.
In our framework Broadcast is a triple made of a CAN, a message set and initiator node constrai-
ned by several well-formedness rules as defined below :

typedef Broadcast = {(can,msgs,initiator).
(∀ x y m Z m ′ Z ′. (<m|x,y,Z>∈msgs ∧ <m ′|x,y,Z ′>∈msgs) −→ (m=m ′∧ Z=Z ′)) ∧
(initiator ∈ CAN_Nodes can)∧
(∀ m s d Z. <m|s,d,Z>∈msgs −→
(s∈ CAN_Nodes can ∧ d∈ CAN_Nodes can ∧ CAN_neighbour can s d∧
(∃ MsgL. valid_path msgs MsgL ∧ destination MsgL = s ∧ source MsgL=initiator)∧
(∀ m ′ d ′ Z ′. <m ′|d,d ′,Z ′>∈msgs −→ (intersects (CAN_Zones can d ′) Z ∧ Z ′⊆ Z )) )

)}

The constraints expressed in the above definition state that :
– There is a single message between any 2 nodes
– The initiator is a node of the CAN
– All messages are exchanged between neighbor nodes of the CAN
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– All messages must originate from a node that has been reached by a list of messages origina-
ting from the origin node : valid_path msgs MsgL ∧ destination MsgL = s ∧ source MsgL=initiator.
Requiring the existence of such a valid path ensures that a broadcast only relies on messages
transmitted from a node to its neighbor (except for the origin of course). Note that it is not
sufficient to require that each message source is the destination of another message, because
that would mean that loops of messages not passing by the origin would be allowed.

– Each node d sends only messages (<m ′|d,d ′,Z ′>) to nodes it has to cover, i.e. node d’ must
intersect the zone Z that d received in its message. We say that the message<m ′|d,d ′,Z ′> sent
by d is a consequence of the first one (<m|s,d,Z>).

– Finally, the zone of a message must always be bigger than the one of its consequences : a
node can only delegate the coverage of a subset of the zone it is responsible for.

We note<C,M,n> such a Broadcast, and define functions BC_CAN, BC_msgs, and BC_initiator to
access its fields. We can then define a predicate checking whether a broadcast covers the whole
CAN (each node of the CAN is either the initiator or the destination of a message) :

definition Coverage:: Broadcast⇒bool
where Coverage BC ≡

∀n∈(CAN_Nodes (BC_CAN BC)).(n=BC_initiator BC ∨ (∃ m s Z. <m|s,n,Z>∈BC_msgs
BC))

From those definitions, we expect to prove completeness of some specific broadcast algorithm,
but also study their optimality. A first lemma we could prove is the following, it states that
there is a longest path among all the paths inside a zone. It will be useful in the next proofs of
more advanced properties because it will allow reasoning by recurrence on the length of this
longest path.

lemma longest_path_BC:
∃ M∈ (BC_msgs BC). (intersects (CAN_Zones C (Message_dest M)) Z ∧

intersects (CAN_Zones C (Message_source M)) Z)
=⇒ ∃ M ∈ (path_inside_zone C (BC_msgs BC) Z).

∀ M ′∈(path_inside_zone C (BC_msgs BC) Z). length M ′≤ length M

Finally, we want to illustrate the way we intend to specify broadcast algorithms. The following
definitions specifies the set of messages of a broadcast algorithm based on a notion of zone to
be covered, it relies on a call to a function Set_of_Valid_ZNL Params that returns a list of pairs
zone, node to which the message is to be forwarded (details are omitted here, but an example
is provided below). The inductive definition of the broadcast is of the form BC_msgs C Mid init
msgs ML, C is the CAN network, Mid is the message identifier, and init is the initiator node.
The inductive definitions put inside the set of messages msgs the messages of the broadcast ;
it takes a message M in the message list ML (list of messages to be treated) and computes its
consequences before putting M inside msgs. The first rule below launches the algorithm for the
initiator : it computes the messages the initiator has to send by producing a message for each
member of the ZNL list for the initiator. The list of produced messages is pushed in the list of
messages to be treated. The second rules takes a message M in the list of messages to be treated,
and does a similar operation, producing a list of messages to be treated, and putting M in the
set of treated messages. At the end, the list of messages to be treated is empty, and the fourth
argument contains the list of messages of the broadcast.
Those rules illustrate how we plan to define the message propagation ; even for a broadcast
algorithm that would not rely on coverage zones, the inductive structure of the message set
definition would be similar.
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inductive BC_msgs:: CAN ⇒nat ⇒nat⇒Message set⇒Message list ⇒ bool
for C:: CAN and Mid::nat and init:: nat
where
BC_init: [[ ZNL∈ Set_of_Valid_ZNL init;

ML ′=map (λ ZN. let Z ′=fst ZN in let N ′=snd ZN in <Mid::nat | d,N ′,Z ′− CAN_Zones C N ′

>) ZNL]]
=⇒ BC_msgs C Mid init {} ML ′

|

BC_step: [[ BC_msgs C Mid init msgs (M#ML); M=<Mid ′ | s,d,Z>; ZNL∈ Set_of_Valid_ZNL s;
ML ′=map (λ ZN. let Z ′=fst ZN in let N ′=snd ZN in <Mid ′::nat | d,N ′,Z ′− CAN_Zones C N ′

>) ZNL]]
=⇒ BC_msgs C Mid init (insert M msgs) (ML@ML ′)

The idea behind the ZNL definition is that a broadcast protocol, to limit the number of dupli-
cates or even remove them, will have to split the geographical space to be covered into (dis-
joint) zones : each node receives a message together with a zone to be covered ; splits the zone
into sub-zones, and finally forwards the message to some of its neighbours with an associated
sub-zone. Each selected neighbour should of course intersect the zone to be covered originally.
An optimal but simple algorithm can be provided by the following way to allocate couples
(node, zone). Suppose a node receives a message with a given zone Z, where (1) Z is a union
of rectangles (thus Z is the finite union of several connected zone, Zi), and (2) each of the
connected zone Zi intersects one of the neighbour, called Ni of the current node. Then, we
forward the message to each of the neighbour Ni, delegating to it the zone Zi minus the zone
ofNi which we just covered ; note that this new zone verifies both (1) and (2), and thus this can
be applied recursively until each node receives the message, only once.
It is easy to define formally couples (node, zone) from the above definition. One of our next
steps is to encode this definition and prove some properties on this simple algorithm.

3.4. Overview of the Mechanization Process
Overall the current specification and proofs consist of 1800 lines of Isabelle code. As usual, most
of the code is dedicated to proofs, but since we are in the early stages of the formalization, and
as our framework requires a lot of different notions, the definitions amount for more than 10%
of this code. Difficult parts of the reasoning concern the finite sets, and the difficulty to reason
by recurrence on a set that is finite but not inductively defined, as illustrated by the induction
principle shown in Section 3.1.
The CAN overlay network is a difficult setting for proofs, because the structure entails some
(simple) geometrical reasoning, which is more complex than reasoning on structures that could
be easily defined by induction. Indeed, Isabelle/HOL support for inductive reasoning is more
valuable than for other kind of reasoning ; but this “only” makes the proofs more difficult to
perform, and longer.
A crucial part of our approach relies on the fact that the definition and properties are expressed
in a formalism that is convincing : it must be easy for an external reader familiar with basic
logics and mathematics to understand our formalism, to be convinced by our formulation of
a CAN network, and of its properties. Note that we do not plan to extract code, and thus an
efficient formalization is not a crucial prerequisite.
It is important for us to have a formalism for expressing the CAN broadcast that is easy to
understand ; that is why we presented the sketch of the specification of a broadcast. Although
the specification is inductive and thus not in a classical form for a broadcast algorithm, we think
it is clear enough to be convincing, and that it is easy to extract an algorithm from it. This way
of expressing a broadcast algorithm is not as natural as one would expect because a form of
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event-based formulation of the algorithm “when a message M is received, send messages M1,
M2, and M3” would be more adapted. However, such an event-like formulation is not well
supported in Isabelle/HOL. In the future, we will try to provide abbreviations in Isabelle to
allow a formulation closer to the reaction to message reception events.
This formalization provides a set of theorems allowing one to prove the properties of com-
munications algorithms, over CAN-like networks. The outcome of this work will thus be a set
of properties for several broadcast algorithms, starting by coverage, (i.e. each node receives
the message). As we will define precisely the hypotheses on the network topology and on the
algorithm, we will know exactly to which kind of networks those algorithms are applicable.

4. Related Work

Reasoning about concurrent and distributed algorithms at the right level of abstraction has
been an active area of research for many years. Common patterns of reasoning in program
verification can be found in well known software verification approaches such as temporal
logic [15] or in the use of global invariants [1].
A fair amount of work has been done on the verification of distributed systems using theo-
rem provers (e.g., Coq, HOL, Lego, etc.) and other tools. These two works, [10, 22], share the
same objective, that is, to practically reason on distributed algorithms and verify their correct-
ness properties. In [22], the author uses HOL to formalize and verify a PIF (propagation of
information with feedback) algorithm. With this example, he showed how to build a reasoning
infrastructure for distributed algorithms in HOL. In the same line of direction, the work done
by Qiao Haiyan [10] reports experiences in verifying distributed algorithms in constructive
type theory using the Agda/Alfa proof assistant and provides a methodology which bridges
the testing and verification of such algorithms.
Ridge goes further and takes an operational approach to distributed systems verification [19]. His
main goal is to demonstrate, through a combination of symbolic evaluation and invariant che-
cking using the HOL4 theorem prover, that the verification of distributed system, down to the
executable code level, is actually feasible. This work relies on tremendous efforts to reduce the
gap between abstract mathematical models of distributed applications and their implementa-
tions. The work consists in a rigorous approach to describe network protocols [18], a formal
model of the OCaml programming language, and an operational verification of OCaml code.
The verification of DHT protocols is still an active area of research. The most popular of them,
Chord [21], was not rigorously and formally proven correct by its designers. Work from [2]
used π-calculus to prove some properties of the pure-join model of the protocol [21]. Zave, in
her work [23], underlines that Chord was never formally proven correct. Using the Alloy ana-
lyzer, she proved the protocol in its two models : the pure-join and full. She provides a rigorous
correctness proof of the pure-join model and and proved that the full model of the protocol is
indeed not correct using lightweight verification methods. Pastry was also the subject of a ve-
rification effort [12] aiming at verifying the correctness and consistency of the protocol which
was specified in TLA+ and model checked using TLC. As stated earlier, authors of [9], in the
context of a content-based publish/subscribe system, provide a propagation algorithm on top
of CAN which prevents repetitive event propagation. However, no formalization nor any form
of reasoning regarding correctness properties of such algorithm is presented.
To the best of our knowledge, we are the first ones to formalize and prove some properties
of an abstraction of the CAN overlay network using a theorem prover. Such a formalization
requires a considerable amount of efforts, and a strong experience in formalization and mo-
dels for distributed systems. This kind of efforts should greatly increase the correctness and
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understanding of distributed algorithms, and the confidence the user has in this correctness.

5. Conclusion and Future Works

We presented a framework for reasoning on communications on top of the CAN overlay net-
work, more specifically, we defined formally all the constructs necessary to specify and prove
properties of a broadcast algorithm on top of CAN. The formalization is still in an early stage
in the sense that all the major constructs have been defined but the properties we have proved
are still only the basic blocks that will allow us to prove more important properties. Overall,
we formalized constructs mixing basic geometrical aspects with neighboring information and
communications. We abstracted away most of the geometrical notions, leading us to an abstract
notion of connectivity in order to simplify the reasoning.
Providing a geometry module to formalize more precisely the geometrical aspects of a CAN
would be an interesting further work. However, in the future, we first plan on investigating
broadcast algorithms on top of CAN, prove their properties and hopefully design an efficient
broadcast algorithm and prove its properties. For that, we plan to investigate further the algo-
rithm proposed in [9] and see if it can be proven correct, and under which conditions.
The next steps we envision are the following.
– Formalization of several state-of-the-art or original broadcast algorithms on a CAN.
– Proof of the properties of those algorithm. We will focus on correctness and liveness, absence

of duplicate messages, and properties related to fault-tolerance.
– Our definition of CAN is actually quite abstract, and do not take into account all the geome-

trical characteristics of the existing CAN implementations. We will study what exact hypo-
theses of the CAN are necessary, and which of the algorithms also work on another topology
(still resembling a CAN).

– Study the impact of churns : nodes arriving and departing cannot be modeled in our current
framework, but we can modify the inductive way to define the broadcast algorithm so that
the underlying structure of the CAN evolves, and check which properties are preserved.
More formally, it would require to change the definition of our broadcast, by allowing the
CAN itself to evolve along the inductive definition. For this we intend to interleave usual
broadcast steps defined previously, and some CAN structural evolution steps. Properties on
a broadcast algorithm with churn will then also depend on how the CAN network evolves.

Acknowledgment : We are indebted to our shepherd, Etienne Riviere, who helped us improve
the paper. We thank him warmly along with the reviewers for their useful comments.
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